extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4)⋊1C22 = C22⋊D8 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 16 | | (C2xD4):1C2^2 | 64,128 |
(C2×D4)⋊2C22 = D4⋊4D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 8 | 4+ | (C2xD4):2C2^2 | 64,134 |
(C2×D4)⋊3C22 = C22.29C24 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 16 | | (C2xD4):3C2^2 | 64,216 |
(C2×D4)⋊4C22 = C22.32C24 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 16 | | (C2xD4):4C2^2 | 64,219 |
(C2×D4)⋊5C22 = D42 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 16 | | (C2xD4):5C2^2 | 64,226 |
(C2×D4)⋊6C22 = D4⋊5D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 16 | | (C2xD4):6C2^2 | 64,227 |
(C2×D4)⋊7C22 = C22.54C24 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 16 | | (C2xD4):7C2^2 | 64,241 |
(C2×D4)⋊8C22 = D4○D8 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 16 | 4+ | (C2xD4):8C2^2 | 64,257 |
(C2×D4)⋊9C22 = C2×C22≀C2 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 16 | | (C2xD4):9C2^2 | 64,202 |
(C2×D4)⋊10C22 = C2×C4⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4):10C2^2 | 64,203 |
(C2×D4)⋊11C22 = C22.19C24 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 16 | | (C2xD4):11C2^2 | 64,206 |
(C2×D4)⋊12C22 = C2×C4⋊1D4 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4):12C2^2 | 64,211 |
(C2×D4)⋊13C22 = C23⋊3D4 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 16 | | (C2xD4):13C2^2 | 64,215 |
(C2×D4)⋊14C22 = C22×D8 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4):14C2^2 | 64,250 |
(C2×D4)⋊15C22 = C2×C8⋊C22 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 16 | | (C2xD4):15C2^2 | 64,254 |
(C2×D4)⋊16C22 = D8⋊C22 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 16 | 4 | (C2xD4):16C2^2 | 64,256 |
(C2×D4)⋊17C22 = C2×2+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 16 | | (C2xD4):17C2^2 | 64,264 |
(C2×D4)⋊18C22 = C2.C25 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 16 | 4 | (C2xD4):18C2^2 | 64,266 |
(C2×D4)⋊19C22 = C22×C4○D4 | φ: trivial image | 32 | | (C2xD4):19C2^2 | 64,263 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4).1C22 = C2≀C4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 8 | 4+ | (C2xD4).1C2^2 | 64,32 |
(C2×D4).2C22 = C23.D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).2C2^2 | 64,33 |
(C2×D4).3C22 = C42⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 8 | 4+ | (C2xD4).3C2^2 | 64,34 |
(C2×D4).4C22 = C42⋊3C4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).4C2^2 | 64,35 |
(C2×D4).5C22 = Q8⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).5C2^2 | 64,129 |
(C2×D4).6C22 = D4⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).6C2^2 | 64,130 |
(C2×D4).7C22 = D4.8D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).7C2^2 | 64,135 |
(C2×D4).8C22 = D4.9D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).8C2^2 | 64,136 |
(C2×D4).9C22 = C2≀C22 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 8 | 4+ | (C2xD4).9C2^2 | 64,138 |
(C2×D4).10C22 = C23.7D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).10C2^2 | 64,139 |
(C2×D4).11C22 = C4⋊D8 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).11C2^2 | 64,140 |
(C2×D4).12C22 = C4⋊SD16 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).12C2^2 | 64,141 |
(C2×D4).13C22 = D4.2D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).13C2^2 | 64,144 |
(C2×D4).14C22 = Q8.D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).14C2^2 | 64,145 |
(C2×D4).15C22 = C8⋊8D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).15C2^2 | 64,146 |
(C2×D4).16C22 = C8⋊7D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).16C2^2 | 64,147 |
(C2×D4).17C22 = C8⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).17C2^2 | 64,149 |
(C2×D4).18C22 = C8⋊2D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).18C2^2 | 64,150 |
(C2×D4).19C22 = D4.3D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).19C2^2 | 64,152 |
(C2×D4).20C22 = D4.4D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 16 | 4+ | (C2xD4).20C2^2 | 64,153 |
(C2×D4).21C22 = C22.D8 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).21C2^2 | 64,161 |
(C2×D4).22C22 = C23.46D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).22C2^2 | 64,162 |
(C2×D4).23C22 = C23.19D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).23C2^2 | 64,163 |
(C2×D4).24C22 = C4.4D8 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).24C2^2 | 64,167 |
(C2×D4).25C22 = C42.78C22 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).25C2^2 | 64,169 |
(C2×D4).26C22 = C42.28C22 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).26C2^2 | 64,170 |
(C2×D4).27C22 = C42.29C22 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).27C2^2 | 64,171 |
(C2×D4).28C22 = C8⋊5D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).28C2^2 | 64,173 |
(C2×D4).29C22 = C8⋊4D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).29C2^2 | 64,174 |
(C2×D4).30C22 = C8.12D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).30C2^2 | 64,176 |
(C2×D4).31C22 = C8⋊3D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).31C2^2 | 64,177 |
(C2×D4).32C22 = C8.2D4 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).32C2^2 | 64,178 |
(C2×D4).33C22 = C22.34C24 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).33C2^2 | 64,221 |
(C2×D4).34C22 = C22.45C24 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 16 | | (C2xD4).34C2^2 | 64,232 |
(C2×D4).35C22 = C22.47C24 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).35C2^2 | 64,234 |
(C2×D4).36C22 = C22.49C24 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).36C2^2 | 64,236 |
(C2×D4).37C22 = C22.53C24 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).37C2^2 | 64,240 |
(C2×D4).38C22 = C24⋊C22 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 16 | | (C2xD4).38C2^2 | 64,242 |
(C2×D4).39C22 = C22.56C24 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).39C2^2 | 64,243 |
(C2×D4).40C22 = C22.57C24 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).40C2^2 | 64,244 |
(C2×D4).41C22 = D4○SD16 | φ: C22/C1 → C22 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).41C2^2 | 64,258 |
(C2×D4).42C22 = C2×C23⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 16 | | (C2xD4).42C2^2 | 64,90 |
(C2×D4).43C22 = C23.C23 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).43C2^2 | 64,91 |
(C2×D4).44C22 = C2×C4.D4 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 16 | | (C2xD4).44C2^2 | 64,92 |
(C2×D4).45C22 = M4(2).8C22 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).45C2^2 | 64,94 |
(C2×D4).46C22 = C2×D4⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).46C2^2 | 64,95 |
(C2×D4).47C22 = C23.24D4 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).47C2^2 | 64,97 |
(C2×D4).48C22 = C23.36D4 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).48C2^2 | 64,98 |
(C2×D4).49C22 = C23.37D4 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 16 | | (C2xD4).49C2^2 | 64,99 |
(C2×D4).50C22 = C4×D8 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).50C2^2 | 64,118 |
(C2×D4).51C22 = C4×SD16 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).51C2^2 | 64,119 |
(C2×D4).52C22 = SD16⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).52C2^2 | 64,121 |
(C2×D4).53C22 = D8⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).53C2^2 | 64,123 |
(C2×D4).54C22 = C22⋊SD16 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 16 | | (C2xD4).54C2^2 | 64,131 |
(C2×D4).55C22 = D4.7D4 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).55C2^2 | 64,133 |
(C2×D4).56C22 = D4.D4 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).56C2^2 | 64,142 |
(C2×D4).57C22 = D4⋊Q8 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).57C2^2 | 64,155 |
(C2×D4).58C22 = D4⋊2Q8 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).58C2^2 | 64,157 |
(C2×D4).59C22 = D4.Q8 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).59C2^2 | 64,159 |
(C2×D4).60C22 = C2×C22.D4 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).60C2^2 | 64,205 |
(C2×D4).61C22 = C2×C4.4D4 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).61C2^2 | 64,207 |
(C2×D4).62C22 = C23.36C23 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).62C2^2 | 64,210 |
(C2×D4).63C22 = C22.26C24 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).63C2^2 | 64,213 |
(C2×D4).64C22 = C23.38C23 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).64C2^2 | 64,217 |
(C2×D4).65C22 = C22.31C24 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).65C2^2 | 64,218 |
(C2×D4).66C22 = C22.33C24 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).66C2^2 | 64,220 |
(C2×D4).67C22 = C22.36C24 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).67C2^2 | 64,223 |
(C2×D4).68C22 = Q8⋊5D4 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).68C2^2 | 64,229 |
(C2×D4).69C22 = Q8⋊6D4 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).69C2^2 | 64,231 |
(C2×D4).70C22 = C22.46C24 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).70C2^2 | 64,233 |
(C2×D4).71C22 = C22.50C24 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).71C2^2 | 64,237 |
(C2×D4).72C22 = C22×SD16 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).72C2^2 | 64,251 |
(C2×D4).73C22 = C2×C4○D8 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).73C2^2 | 64,253 |
(C2×D4).74C22 = C2×C8.C22 | φ: C22/C2 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).74C2^2 | 64,255 |
(C2×D4).75C22 = C2×C4×D4 | φ: trivial image | 32 | | (C2xD4).75C2^2 | 64,196 |
(C2×D4).76C22 = C4×C4○D4 | φ: trivial image | 32 | | (C2xD4).76C2^2 | 64,198 |
(C2×D4).77C22 = C22.11C24 | φ: trivial image | 16 | | (C2xD4).77C2^2 | 64,199 |
(C2×D4).78C22 = C23.33C23 | φ: trivial image | 32 | | (C2xD4).78C2^2 | 64,201 |
(C2×D4).79C22 = D4⋊6D4 | φ: trivial image | 32 | | (C2xD4).79C2^2 | 64,228 |
(C2×D4).80C22 = D4×Q8 | φ: trivial image | 32 | | (C2xD4).80C2^2 | 64,230 |
(C2×D4).81C22 = D4⋊3Q8 | φ: trivial image | 32 | | (C2xD4).81C2^2 | 64,235 |
(C2×D4).82C22 = C2×2- 1+4 | φ: trivial image | 32 | | (C2xD4).82C2^2 | 64,265 |